Onderzoekers van de Ruhr-universiteit in Bochum (D) hebben een zonnecel ontwikkeld die werkt met eiwitten die een fotosynthetisch proces van stroomopwekking aan de gang houden. Het gaat om twee verschillende eiwitsystemen die zijn ontwikkeld door Wolfgang Schumann en zijn medeonderzoekers. Over rendementen, hét gevoelige thema bij zonnecellen, hebben we het nog maar even niet… Lees verder
Categorie archieven: zonnecellen
Nieuwe innovatie grote stap voorwaarts zonnecel (?)
Een zonnecel, ik zeg het nog maar eens, is technisch gezien een elegante manier om zonne-energie direct om te zetten in voor ons bruikbare energie (elektra). Heel wat eleganter dan dat geknoei met water, zoals bij andere, conventionele manieren van energieopwekking. Toch wil de echte doorbraak met zonne-energie maar niet komen. Te weinig rendement, is dan de kreet, maar dat kan niet waar zijn. Van een energetisch gezien totaal onrendabel systeem als de auto, rijden tientallen miljoenen exemplaren op de aardbol rond. Ter zake. Er zijn, bij onderzoek, twee systemen bedacht, die het rendement van zonnecellen over de economische (en geestelijke?) drempel zou kunnen tillen: een cel die ook infrarood licht gebruikt en een rendement van 40% belooft en een eenlaagscel met een variabele ‘bandkloof’. Lees verder
Eindelijk af van de stoommachine?
Het maken van elektriciteit is een nogal inefficiënte en ouderwetse bezigheid. Je maakt een pot water warm, wringt de stoom die daarvan af komt door wat pijpjes en brengt met de zo ontstane gasstroom een magneet aan het draaien die wisselstroom induceert in een spoel. We kunnen duur doen, maar zo primitief is het nog steeds. De zon is een gulle schenker van energie, maar wij, slimme mensen, weten daar nauwelijks van te profiteren. Zonnecellen zijn een elegante manier om licht direct om te zetten in elektriciteit, maar daar zijn we al jaren mee aan het knoeien, vooral vanwege de hoge kosten en het relatief lage rendement (dat is een kip/ei-verhaal). Er zijn ook technieken om direct warmte om te zetten in elektriciteit, maar ook die kampen met lage relatief rendement. Aan de Eidgenossische technische Hochschule Zürich schijnt wat dat betreft nu een stap in de goede richting gezet te zijn: een systeem dat helpt bij het zoeken naar hogere rendementen, de thermoelektrische materiaalemulator.
Zonnecel met opbrengst van 44,7% gemaakt

Rendementen van de verschillende typen zonnecellen. De recordcel behoort tot de multicellen (paarse lijn). (foto: Wikicommons)
Een Frans/Duitse onderzoeksgroep heeft een nieuw voorlopig record voor zonnecellen gevestigd van 44,7%. De rendabele zonnecel is gebouwd volgens een nieuwe techniek, waarbij de cel bestaat uit vier subcellen. Eerder dit jaar kondigden de deelnemende instituten en bedrijven (Fraunhofer ISE, Soitec, CEA-Leti en het Helmholtzinstituut) al een cel aan met een rendement van 43,6%. Op naar de 50%, is de gedachte van de betrokkenen. Lees verder
Weer veelbelovende batterij ontwikkeld voor energieopslag
Aan het bekende onderzoeksinstituut MIT in het nabij Boston gelegen Cambridge (VS) is een oplaadbare batterij ontwikkeld die niet afhankelijk is van dure membranen en is bedoeld voor goedkope en grootschalige opslag van elektrische energie. Mogelijk is het nieuwe type batterij een oplossing van het opslagprobleem dat kleeft aan schone energievormen als zon-en windenergie. Doordat die duurzame energiebronnen niet produceren als er vraag is, ontstaat er een probleem met het opslaan van dat overschot.
Het prototype, ter grootte van een handpalm, produceert drie keer meer energie per vierkante centimeter als andere membraanloze batterijen en is een orde groter dan van veel lithiumionbatterijen en andere commerciële en experimentele energieopslagsystemen. De batterij werkt met een verschijnsel dat laminaire stroming wordt genoemd. Twee vloeistoffen worden door een buis gepompt, waarbij ze een elektrochemische reactie ondergaan bij de elektrodes (die tegengesteld is bij oplading en ontlading). Onder de juiste omstandigheden lopen de stromen parallel en mengen heel weinig. De twee reagerende vloeistoffen zijn: een broom en waterstof. In praktijk zijn het er eigenlijk drie, maar twee die reageren (waterstof en broom). Via de buis wordt vloeibaar broom naar de koolstofkathode gepompt en broomwaterstof onder een poreuze anode (waarin platina als katalysator), waar tegelijkertijd waterstofgas doorheen werd gepompt. Die combinatie belooft veel voor de energieopslag, maar er is een groot MAAR. Broomwaterstof, dat ontstaat uit de reactie tussen waterstof en broom, is een erg agressieve stof, die bij membraanbatterijsystemen, het membraan aantast waardoor de energieopslag wordt vertraagd en de levensduur van de batterij sterk wordt bekort. Weg dus met dat membraan, dachten de MIT-onderzoekers. Dat bleek, in weerwil van de heersende gedachte in wetenschappelijke kringen, heel goed mogelijk. Met Amerikaanse bravoure zegt Martin Bazant, hoogleraar chemische technologie: “Dit is een kwantumsprong op het gebied van energieopslag.” “Opslag”, zegt mede-onderzoeker Cullen Buie, “is sleutel tot het gebruik van duurzame energie. Zolang energieopslag niet betrouwbaar en betaalbaar is maakt het niet uit hoe goedkoop je met zon of wind energie kan produceren.”
De MIT-onderzoekers maakten ook een wiskundig model om de chemische reacties in een waterstof/broom-systeem te beschrijven. Bazant: ” Dat model geeft ons vertrouwen dat als we het systeem opschalen, we de juiste dimensies kiezen. We denken dat we, aan de hand van dit model, records kunnen breken wat betreft energiedichtheid.” De MIT-onderzoekers verwachten dat ze de $100/kWh-grens kunnen breken die de Amerikaanse overheid als grens ziet voor economisch rendabele opslagsystemen.
Bron: Eurekalert
Stikstof reageert met grafeen door ‘mechanische’ scheikunde

In een capsule gevuld met stikstof, grafeen en kogeltjes, werd stikstof ‘mechanisch’ verbonden met koolstof. Het onstane stikstofgrafeen zou een prima vervanger zijn van platina in zonne- en brandstofcellen.
80% van de aardatmosfeer bestaat uit stikstof in de vorm van een atoompaar. Dat stikstofmolecuul reageert moeilijk met andere verbindingen en elementen. Bij een proces om ammoniak te maken, het Haber-Bosch-proces, wordt stikstof met veel ‘geweld’ (ruim 400°C en drukken van 10 tot zo’n 100 MPa (= 1000 atmosfeer)) aan waterstof gekoppeld. Een onderzoeksgroep aan de Zuid-Koreaanse Ulsan-instituut voor wetenschap en technologie heeft een aanzienlijk milieuvriendelijker en goedkopere manier ontwikkeld om stikstof te laten reageren met grafeen (een verschijningsvorm van koolstof). De groep rond Jong-Beom Baek mengde stikstof met grafeen met behulp van stalen kogels van een halve centimeter in diameter. Stikstof bleek zich te binden aan de koolstofatomen in het grafeen wier band met een ander koolstofatoom door de kogeltjes waren ‘stukgeslagen’. Geen hoge drukken en temperaturen meer, zo lijkt het, want als stikstof eenmaal een verbinding is aangegaan, dan reageert het makkelijk(er) verder met andere elementen en verbindingen.
Dat zou een richting kunnen zijn, maar het genitrogeneerde grafeen zou ook een prima vervanger kunnen zijn voor de platina-elektrodes die worden gebruikt in ‘organische’ zonnecellen en PEM-brandstofcellen, beide min of meer duurzame energietechnieken. Grafeen is wel een kandidaat als platina-vervanger, maar met de huidige technieken wordt de vervaardiging van een koolstof-elektrodes veel te duur, schrijven de onderzoekers in Scientific Reports van het blad Nature. Het goedkoop te produceren stikstofgrafeen zou een uitstekend alternatief zijn, denken zij.
Bron: Science Daily
‘Kunstboom’ produceert een beetje waterstof
Of het nou de doorbraak is die al zo vaak is beloofd op het gebied van de omzetting van zonne-energie in voor ons arme mensen bruikbare vorm is nog maar de vraag, maar het lijkt de goede kant op te gaan. In de VS heeft Peidong Yang van het onderzoeksinstituut Lawrence Berkeley National Lab samen met enkele andere onderzoekers een kunstmatige boom ontwikkeld die zonne-energie, direct omzet in waterstof. Daarbij is de natuurlijke fotosynthese in chloroplasten in plantencellen min of meer nagebootst. Het kunstmatige fotosynthesesysteem bestaat uit twee lagen halfgeleiders (titaanoxide en silicium) die licht absorberen, een tussenlaag voor het ladingtransport en ruimtelijk gescheiden katalysatoren. “Om de splitsing van water in waterstof en zuurstof te vergemakkelijken hebben we structuren gemaakt van nanodraden met stammen van silicium en takken van titaanoxide. Dat ziet er heel erg uit als een kunstmatig bos”, zegt Yang in ScienceDaily. “In de natuurlijke fotosynthese wordt de energie uit het zonlicht gebruikt om allerlei reacties in het chloroplast te doen plaatsvinden. Wij hebben de nanoheterostructuur geïntegreerd op een manier die daarop lijkt, waarmee we een hoger rendement in de omzetting van zonne-energie naar brandstof kunnen verwezenlijken in de toekomst.” In een plant wordt met behulp van licht (=energie) kooldioxide omgezet in koolwaterstoffen zoals suikers. Dat gaat via wat genoemd wordt een Z-schema: de elektronen die bij de reacties betrokken zijn maken een beweging als een Z op zijn kant. Yang en zijn collega’s imiteerden in hun ‘kunstboom’ dat patroon. Het silicium is er voor de waterstofproductie (fotokatode). Bij titaanoxide ontstaat zuurstof (anode).
De structuur moet de opbrengst van de ‘kunstboom’ maximaliseren. Door de fijne nanodraden (nano staat voor 1 miljoenste millimeter) is het effectieve oppervlak groot, waardoor de ‘boom’ een relatief hoog rendement heeft, al zal niemand met zijn ogen knipperen als ie hoort dat dat maar een heel bescheiden 0,12% is. Dat is vergelijkbaar met wat planten presteren, maar dat moet voor menselijk gebruik toch drastisch omhoog. Yang is optimistisch: “We hebben goede ideeën om stabiele fotoanodes te ontwikkelen die beter presteren dan titaanoxide. Ik ben er van overtuigd dat we het rendement kunnen opschroeven tot in de hele procenten.”
Bron: ScienceDaily
Passief koelsysteem ‘schiet’ warmte de ruimte in
Het Franse webblad Futura-Sciences kwam onlangs met een tikkeltje belegen verhaal, maar daarom niet minder interessant, over het passief koelen van gebouwen. Vooral in Amerika worden gigantische hoeveelheden aan energie verspild met het koelen van gebouwen in de zomer. Aan de Amerikaanse universiteit van Standford hebben ze nu een systeem ontwikkeld waarmee je gebouwen ’s zomers kunt koelen zonder dat de elektriciteitsmeter loopt. Het systeem zou energetisch voordeliger zijn dan een koelsysteem dat draait op zonnecellen.
Het koelen van gebouwen is aanleg simpel: je kaatst het zonlicht (inclusief de warmte) terug. Dat werkt een klein beetje. Het grootste deel van de warmte komt toch wel via een omweg in het gebouw. Bovendien wordt de reflector zelf warm waardoor er van koelen niks meer terecht komt. De Stanford-onderzoekers, aangevoerd door Shanhui Fan, zeggen dat hun passieve koelsysteem zelfs midden overdag in de zomer koelt.
Om dat te bewerkstelligen moet het systeem zo veel mogelijk zonlicht terugkaatsen, zonder zelf warm te worden, en de warmte-energie uit het gebouw zelf zo ver mogelijk de ruimte in ‘schieten’. Dat is lastig want de meeste straling blijft in de atmosfeer hangen (het welbekende broeikaseffect). De aardatmosfeer laat alleen warmte in een bepaald golflengtegebied door.
Het nu gerealiseerde systeem voldoet aan beide eisen: het kaatst een groot deel van het zonlicht terug en zendt een deel van de warmtestraling, waarvoor de aardatmosfeer ‘doorzichtig’ is, de ruimte in waardoor het ‘bepaneelde’ gebouw dus (passief) koelt. De onderzoekers fabriceerden een fotonische nanostructuur die het zonlicht terugkaatst (op het plaatje de gele piek links) en de warmte van het gebouw weg ‘schiet’ (de twee paarse pieken rechts op het plaatje). Het materiaal bestaat vooral uit kwarts en silciumcarbide (zie plaatje bij a). Beide stoffen absorberen weinig zonlicht. De capaciteit van de nanopanelen ligt op zo’n 100 W per vierkante meter. Dat betekent dat als de Sanford-panelen 10% van het dak van een eensgezinswoning zouden bedekken, daarmee 35% op de (elektrisch aangedreven) koelcapaciteit zou kunnen worden bespaard, zo geeft de universiteit in een bericht als rekenvoorbeeld. De techniek lijkt een grote toekomst tegemoet te gaan, want uiteraard wordt het niet alleen in de VS ’s zomers warm.
Bron: Futura_Sciences (foto Sandford)
Mooi weer leidt tot stroomoverschot in België
Het zonnige en vooral winderige weer hebben ervoor gezorgd dat zonnepanelen en
windturbines maandag j.l. veel stroom produceerden. Gecombineerd met een laag verbruik op de tweede Paasdag heeft dat in België geleid tot een stroomoverschot, zo meldt De Standaard (die het weer van De Tijd heeft). De productie lag zo’n 15% boven het afgenomen vermogen.
Stroomoverschot levert problemen op. Er moet dan capaciteit worden afgeschakeld, zoals nu is gebeurd met de waterkrachtcentrale bij Coo. Niet alle centrales laten zich zo makkelijk afschakelen. Vooral bij kern- kolencentrales is dat problematisch. Voor een deel kan die stroom ook wel worden uitgevoerd, Frankrijk nam stroom af, maar de ‘exporteur’ mag blij zijn als ie daar niet voor hoeft te betalen.
Zo’n situatie pleit voor een opslagsysteem, maar nog nergens is daarin voorzien, alle mooie plannen van Lievense ten spijt.
VS gaan weer plutonium maken
Zo’n 25 jaar lang heeft Amerika zelf geen plutonium meer geproduceerd, maar aan die onthouding is nu een eind gekomen. Reden daarvoor is dat de NASA deze uiterst giftige, radioactieve brandstof nodig heeft voor zijn ruimtevaartprogramma, zo meldt Der Spiegel online op gezag van de Duitse uitgave van New Scientist.
De Amerikanen zweren bij kernenergie als het om de energievoorziening van ruimtevaartuigen gaat. De laatste 25 jaar kochten de Amerikanen de brandstof elders in, onder meer in Rusland. In het Nationale Energielab in Oak Ridge, Tennessee, is nu al een paar gram geproduceerd van de gewenste isotoop plutonium-238. De capaciteit is zo’n 1,5 kilo per jaar, volgens Der Spiegel genoeg om alle NASA-plannen te kunnen uitvoeren. Slechts op weinig plaatsen in de ruimte is er voldoende zonlicht om dat, via zonnecellen, als energiebron te kunnen gebruiken. Het Mars-karretje Curiosity heeft zo’n 4 kilo plutonium bij zich. Volgens de NASA is er weinig weinig kans dat het gevaarlijke plutonium voor problemen zou kunnen zorgen.
Greenpeace is er niet gerust op. Niet alleen bestaat er kans op verspreiding bij een calamiteit op of in de buurt van de aarde, maar bij de productie van de raketbrandstof ontstaat ook plutonium-239, een isotoop dat een veel langere halfwaardetijd heeft dan plutonium-238 (24 000 jaar tegen 88 jaar). Dat betekent dat dat isotoop duizenden jaren achter slot-en-grendel zou moeten worden opgeslagen en bewaakt. Plutonium-isotopen kunnen gebruikt worden voor de aanmaak van kernwapens. De vraag is wat Amerika zou doen als Iran besluit plutonium te gaan produceren voor het eigen ruimtevaartprogramma…
Bron: Der Spiegel Online