Opgevoerde fotosynthese moet wereld voeden

Maisveld

Zal mais met een opgevoerde fotosynthese blauw zien?

De rek is wel een beetje uit de landbouwproductie en de wereldbevolking groeit maar door. In 2050, dat duurt nog maar 35 jaar, zullen de huidige 7 miljard mensen er 9,5 miljard zijn geworden. Als die allemaal ook nog te eten moeten hebben, dan zal er iets met de voedselproductie moeten gebeuren. Die moet omhoog en dat zou kunnen door met behulp van genetische technieken de omzettingseffeciëntie van de fotosynthese te vergroten. Nu zetten planten hooguit een paar procent van de zonne-energie om in voor de mens bruikbare (en uitaard ook onbruikbare) voedingsstoffen. Daar zit nog een hoop rek in, is de gedachte van Stephen Long en medeonderzoekers. Lees verder

Nanobuisjes verdrievoudigen energieopbrengst plant

Nanobuisjes doorboren membraan bladgroenkorrel

De nanobuisje doorboren de membranen rond de bladgroenkorrels (afb: Nature)

Door planten vol te stoppen met nanobuisjes schijnt de energieopbrengst van de fotosynthese van een plant verdrievoudigd te kunnen worden, zo hebben onderzoekers rond Michael Strano van het MIT in Boston ontdekt. Dat komt doordat die minuscule koolstofbuisjes het voor de plant bruikbare deel van het lichtspectrum flink vergroten. Zelfs de in energetisch opzicht productiefste planten gebruiken maar 10% van het ontvangen zonlicht. Dan zou met de koolstofbuisjes in de chloroplasten, de energiefabriekjes van planten, op 30% komen.  Nu nog een manier vinden om daar gebruik van te maken. Overigens zijn ze bij het MIT bezig ook andere mogelijkheden van planten uit te buiten, als detectoren of onderdeel van elektronische systemen. Dat heet dan meteen: de bionische plant. Lees verder

Zonnecel met fotosynthetische eiwitten werkt

thermofiele cyanobacterie

Warmteminnende cyanobacterie

Onderzoekers van de Ruhr-universiteit in Bochum (D) hebben een zonnecel ontwikkeld die werkt met eiwitten die een fotosynthetisch proces van stroomopwekking aan de gang houden. Het gaat om twee verschillende eiwitsystemen die zijn ontwikkeld door Wolfgang Schumann en zijn medeonderzoekers. Over rendementen, hét gevoelige thema bij zonnecellen, hebben we het nog maar even niet… Lees verder

‘Zonnecel’ produceert waterstof

Watersplitser

Met behulp van een kobalt-katalysator en een halfgeleider (GaP) wordt water direct gesplitst in waterstof en zuurstof (foto: Lawrence Berkeley-lab)

Het is een oude droom om net als planten direct zonlicht te kunnen omzetten in voor het organisme bruikbare energie. Zeker 30 jaar geleden was ik in Berlijn bij, dacht ik, de afdeling bionica van de technische universiteit in het toen nog verdeelde Berlijn, waar onderzoekers enthousiast vertelden over plantjes die waterstof produceren. Het verhaal is vaak herhaald, zij het dat het dan steeds weer om andere onderzoekers ging: ergens was er kennelijk steeds iets niet helemaal goed gegaan. Afijn nu dus weer een verhaal van een systeem dat zonlicht gebruikt voor de directe omzetting van water in zijn basiscomponenten zuurstof en waterstof. Halleluja. Nog maar even afwachten wat dat oplevert.
Onderwijl kan ik wel vertellen wat de onderzoekers van de Lawrence Berkeley-lab, onderdeel van het Amerikaanse ministerie van energie, hebben uitgevoerd: ze hebben met behulp van zonlicht water ontleed in waterstof en zuurstof. Het hart van het systeem is een halfgeleider die licht opvangt en omzet in energie waarmee water is te ontleden in zijn basiscomponenten. De halfgeleider krijgt daar hulp van een katalysator, die de splitsing van water vergemakkelijkt.
Aan energie ontbreekt het de aarde niet. Elk uur komt, volgens het persbericht van het instituut, meer zonne-energie op de aarde terecht dan de mensheid in een jaar opsoupeert. Het lab waar het onderzoek gedaan is, het centrum voor kunstmatige fotosynthese (JCAP), is in 2010 opgericht. De doelstelling van het lab is de (natuurlijke) fotosynthese 10 keer zo efficiënt te maken.
In oudere systemen zijn de katalysatoren vastgezet op een niet lichtgevoelige ondergrond. Daarbij moet een externe stroombron gebruikt worden om water te splitsen. Gary Moore en zijn medewerkers hebben de ‘stroomgenerator’ (de halfgeleider) en de katalysatoren gecombineerd. “Daardoor kunnen we eenvoudig door het belichten van de fotokathode waterstof genereren”, stelt Moore.
De fotokathode van Moore bestaat uit de halfgeleider galliumfosfide en een kobaltkatalysator. Galliumfosfide absorbeert zichtbaar licht waarmee het meer licht van de zon kan opvangen dan een halfgeleider die absorbeert in het ultraviolette spectrum, hetgeen resulteert in een hogere ‘energieopbrengst’ en (dus) hogere waterstofproductie. Het vervelende van galliumfosfide is alleen dat die halfgeleider tamelijk onstabiel kan zijn in een fotoelektrochemisch proces.
Moore en zijn medewerkers ontdekten dat als je de halfgeleider bedekt met een laag kunststof (polyvinylpyridine) die stabiliteit toeneemt terwijl tegelijkertijd de waterstofproductie aanzienlijk stijgt. “Dat modulaire systeem van halfgeleider, deklaag en katalysator betekent dat we ook andere combinaties kunnen uittesten. Zo zouden we de dure metaalkatalysatoren de we nu gebruiken kunnen vervangen door kats die gebaseerd zijn rijker op aarde voorkomende materialen”, stelt Moore. Ondanks zijn goede elektronisch eigenschappen kan galliumfosfide een deel van het zichtbare zonnespectrum niet absorberen, waardoor de ‘energieopbrangst’ niet optimaal is. Moore is nu op zoek naar halfgeleiders die een groter deel van het spectrum opnemen en katalysatoren die sneller werken bij lagere spanning. Ook onderzoeken de wetenschappers of met hun systeem het broeikasgas kooldioxide kan worden gereduceerd.

Bron: Eurekalert